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Abstract. We present a brief (mainly bibliographical) report on recently performed calculations of terms
of order O(α4

sn
2
f ) and O(α4

sn
2
fm2

q) for hadronic Z and τ decay rates. A few details about the analytical
evaluation of the masters integrals appearing in the course of calculations are presented.

PACS. 12.38.Bx Perturbative calculations – 12.38.-t Quantum chromodynamics

1 Introduction

Important physical observables like the cross-section of
e+e− annihilation into hadrons and the decay rate of the
Z boson are related to (the absorptive parts of) the vector
and axial-vector current correlators (for a detailed review
see, e.g. [1]). From the theoretical viewpoint the two-
point correlators are ideally suited for evaluations in the
framework of perturbative QCD (pQCD) [2]. Indeed, due
to the simple kinematics (only one external momentum),
even multiloop calculations can be analytically performed.

In many important cases (with the Z- and τ -decay ra-
tes as prominent examples) the external momentum is
much larger than the masses of the relevant quarks. It
is then justified to neglect these masses in a first approxi-
mation which significantly simplifies all the calculations.
Within this massless approximation of QCD, the absorp-
tive parts of vector and scalar correlators are analytically
known to α3

s [3–6]. The residual quarks mass effects can
be taken into account via an expansion in quark masses.
This has been done for the quadratic and quartic terms
to the same α3

s order [7–9].
During the past years, in particular through the ana-

lysis of Z decays at LEP and of τ decays, an enormous
reduction of the experimental uncertainty has been achie-
ved. Inclusion of the O(α3

s) corrections is mandatory al-
ready now. Quark mass effects must be included for Z-
decays. The remaining theoretical uncertainty from un-
calculated higher orders is at present comparable to the
experimental one [1]. Thus, the full calculation of the next
contributions, those of O(α4

s), to the two-point quark cur-
rent correlators is an important next step in testing the
Standard Model and crucial for precise determination of
the QCD coupling constant.

In this paper we discuss some selected theoretical as-
pects of recent calculations of terms of order O(α4

sn
2
f )

and O(α4
sn

2
fm2

q) contributing to the two-point correlator

of the vector (and axial) quark currents. More detailed
discussion as well as phenomenological applications in the
context of hadronic Z and τ decays can be found in the
original publications [10–12].

2 Correlator and diagrams

A well-known definition of a two-point quark current cor-
relator reads

Π
V/A
µν,ij(q, mi, mj , m, µ, αs) =

i

∫
dxeiqx〈T [ jV/A

µ,ij (x)(jV/A
ν,ij )†(0) ]〉 (1)

with m2 =
∑

f m2
f and j

V/A
µ,ij = q̄iγµ(γ5)qj . The two (not

necessarily different) quark fields with masses mi and mj

are denoted by qi and qj respectively.
The number of diagrams contributing to (1) grows fast

with the order of perturbation theory. While only three
diagrams appear at O(αs), this number becomes 37 and
738 at O(α2

s) and O(α3
s) respectively1. Finally, one ar-

rives at 19832 five-loop diagrams at O(α4
s). Even more

important is the fact that the calculational complexity of
a single diagram also grows tremendously with every ad-
ditional loop.

The calculational effort for a full evaluation of R(s) in
O(α4

s) is enormous and with present techniques exceeds
the available computer resources by an order of magni-
tude. It is for this reason that our calculations were limi-
ted to a gauge invariant subset, namely the terms of order
α4

sn
2
f , where nf denotes the number of fermion flavours.

Some typical representatives of the corresponding set of
diagrams are depicted in Fig. 1. Note that the terms of

1 The specific numbers are cited as produced by the diagram
generator QGRAF [13] for the case of the non-diagonal quark
current (i �= j in (1)).
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Fig. 1. Some representative of four-loop diagrams contributing
to (1) in the O(α4

sn
2
f ) order

order α4
sn

3
f are rather simple. They had been obtained

earlier by summing the renormalon chains [14].

3 Reduction to masters

As is well-known [15] the calculation of absorptive part of
the correlator (1) in the massless limit2 at the L + 1 loop
level is reducible to the evaluation of some properly con-
structed set of massless L-loop propagator-type diagrams
(the corresponding Feynman integrals will be referred to
as “p-integrals”). The completely automatized reduction
procedure of [5] is based the method of Infrared Rearran-
gement [16] enforced by a special technique of dealing with
infrared divergences – the R∗-operation [17].

Thus, to compute the five loop O(α4
s) contribution in

the absorptive part of (1) one should be able to evaluate
generic four loop p-integrals. Unfortunately, this problem
is far more complicated than the one at three loops. The
latter was in principle done long ago by a manual con-
sideration of all possible cases within the integration-by-
parts technique (IBP) [18]. Nevertheless, it took almost
ten years before the corresponding algorithm was reliably
implemented in FORM [19,20]. A straightforward exten-
sion of the same approach to four loops is barely possible
at all.

Fortunately, another method has been developed
in [21–24].

According the IBP paradigm every integral is to be
reduced to a sum of irreducible (“master”) integrals, with
coefficient functions being rational functions of the space-
time dimension D. However, in contrast to the standard
approach, where these coefficients are calculated by a re-
cursive procedure, they are in the current approach obtai-
ned from an auxiliary integral representation [21] in the
form of an expansion in 1/D. Calculating sufficiently many
terms in this expansion, the original D-dependence can be
reconstructed.

The calculations were done in the following way. First,
the set of irreducible integrals involved in the problem
was constructed, using the criterion irreducibility of Feyn-
man integrals [24]. Second, the coefficients multiplying
these master integrals were calculated in the 1/D → 0
expansion. This part was performed using the parallel ver-

2 The statement also holds for the quadratic in quark masses
contribution.
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Fig. 2. A generic massless two-loop diagram whose expansion
in ε was computed to order ε7 in [26]

sion of FORM [25] running on an 8-alpha-processor-SMP-
machine with disk space of 350 GB. The calculations in
the massless limit took approximately 500 hours in total.
(Approximately the same time went into the calculation
of the O(α4

sn
2
fm2

q) contribution.) Third, the exact answer
was reconstructed from results of these expansions. Ex-
tensive tests were performed.

4 Master integrals and their evaluation

The master integrals appearing in the course of our cal-
culations are shown in Table 1. These can be separated
in three group: simple (m01, m11, m12, m13, m14, m23,
m24, m25, m31), semi-simple (m22, m26, m27, m21, m32,
m33) and the difficult ones (m34, m35, m41 and m52).

Simple integrals can be immediately performed in
terms of Γ functions by a repeated application of the text-
book one-loop integration formula. The members of semi-
simple group prove to be easily reducible to a generic two-
loop integral shown on Fig. 2 The latter was computed up
to pretty high order in the parameter ε = 2 − D/2 in the
eighties [26,27]. Luckily enough, remaining four difficult
integrals were all analytically evaluated3 long ago in the
course of the computation of the five-loop β-function in
the φ4-theory [28,29] .

5 Summary

The calculations performed in [10–12] demonstrate that
the approach based on the 1/D-expansion is suited to ob-
tain genuine QCD results in five loop approximation. Fur-
ther analysis shows that the other diagrams appearing in
order α4

s can be solved in the same way, given sufficient
computer resources. Work in this direction is in progress.

This work was supported by Sonderforschungsbereich-
Transregio “Computational Particle Physics” (SFB-
TR 9), by INTAS (grant 00-00313), by RFBR (grants 01-
02-16171, 03-02-17177) and by the European Union under
contract HPRN-CT-2000-00149.

3 We mean the pole and constant parts of the corresponding
ε expansions.
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Table 1. Master four-loop propagator-type integrals appea-
ring in the course of calculations of the correlator (1) in orders
O(α4

sn
2
f ) and O(α4

sn
2
fm2

q)
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